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Abstract–High-performance W-band monolithic one- and
two-stage low noise amplifiers (LNA’s) based on pseudo-
morphic InGaAs/GaAs HEMT devices have been developed.
The one-stage amplifier has a measured noise figure of 5.1 dB
with an associated gain of 7 dB from 92 to 95 GHz, and the
two-stage amplifier has a measured small signal gain of 13.3 dB
at 94 GHz and 17 dB at 89 GHz with a noise figure of 5.5 dB
from 91 to 95 GHz. An eight-stage LNA built by cascading four
of these monolithic two-stage LNA chips demonstrates 49 dB
gain and 6.5 dB noise figure at 94 GHz. A rigorous analysis
procedure was incorporated in the design, including accurate
active device modeling and full-wave EM analysis of passive
structures. The first pass success of these LNA chip designs in-
dicates the importance of a rigorous designlanalysis method-
ology in the millimeter wave monolithic IC development.

I. INTRODUCTION

MONOLITHIC millimeter-wave integrated circuits
provide significant advantages of small size, re-

peatability and low cost at high volume over the conven-
tional hybrid integrated circuit components in millimeter
wave radar, electronic warfare, smart weapon, and radio-
meter system applications. The low noise amplifier
(LNA) is a key component in the receiving portion of these
systems. The motivation of this work was to achieve state-
of-the-art performance of a monolithic LNA in W-band to
improve the performance of existing systems and enable
new applications. A successfully developed W-band
monolithic downconverter [9] and an eight-stage high gain
amplifier prove the feasibility of the monolithic LNA ap-
proach.

JV-band monolithic one- and two-stage LNA’s have
been designed, fabricated and tested with demonstrated
excellent performance. For the one-stage LNA, a noise
figure of 5.1 dB with 7 dB associated gain from 92 to 95
GHz has been measured, while the two-stage LNA shows
13.3 dB gain at 94 GHz, 17 dB gain at 89 GHz and 5.5
dB noise figure from 91 to 95 GHz. The results of the
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two-stage LNA not only are the best monolithic LNA per-
formance at IV-band frequency reported to date [1]-[5],
but also rival some recently reported hybrid LNA results
[6]. Table I compares the present work [10] with previ-
ously published results [1]–[6]. An eight-stage LNA built
by cascading four of these monolithic two-stage LNA
chips demonstrates 49 dB gain and 6.5 dB noise figure at
94 GHz, which is the highest gain unit ever achieved at
this frequency. Moreover, the first monolithic W-band
downconverter has also been successfully developed us-
ing a similarly designed LNA followed by a singly bal-
anced HEMT gate diode mixer [9].

A rigofous design/analysis procedure was developed for
these IV-band monolithic LNA’s. This procedure includes
accurate HEMT device modeling and full-wave electro-
magnetic (EM) analysis for the passive structures. In fact,
the methodology is applicable for all monolithic milli-
meter-wave integrated circuit (MMWIC) designs. The
first pass success of this LNA chip design indicates the
importance of a rigorous design/analysis methodology for
millimeter-wave monolithic IC development. This de-
sign/analysis procedure is described from Section II to IV
along with device characteristics and circuit design con-
siderations. Section XIpresents the characteristics of the
InGaAs pseudomorphic (PM) HEMT’s used in the LNA’s
and the accurate modeling technique. Full-wave EM anal-
ysis of passive structures is described in Section III. The
design considerations of W-band monolithic LNAs and the
designlanalysis methodology are discussed in the Section
IV. Section V shows the performance of the one- and two-
stage LNA’s, and test results of an eight-stage LNA built
by cascading four monolithic two-stage LNA chips. A
brief sum~mary is given in Section VI.

II. PM HEMT CHARACTERISTICSAND DEVICE
MODELING

A. PM HEMT Characteristics

The devices reported in this paper have been optimized
for high gain operation at IV-band. The InGaAs PM
HEMT uses a planar doping layer to achieve high channel
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TABLE I
PERFORMANCESUMMARY OF LNA’s AT W-BAND

Gain/NP
No. of (dB) @

Device Technology Devices 94 GHz LNA Design Features

GaAs-based PM HEMT
GaAs-based PM HEMT
InP-based HEMT
InP-based HEMT
InP-based HEMT
GaAs-based PM HEMT
InP-based HEMT
GaAs-based PM HEMT
GaAs-based PM HEMT

1
1
2
5
7
2
2
2
8

5.o/NA
5.o/NA
8.o/NA
6.o/NA
6.o/NA
9.7/4.2
11.5/3.3
13.3/5.5
49/6.5

MMIC one-stage [1]
MMIC one-stage [2]
MMIC cascode configuration [3]
MMIC distributed amplifier [4]
MMIC distributed amplifier [5]
Hybrid [6]
Hybrid [6]
MMIC two-stage, present work [10]
Eight-stage, present work [15]

aspect ratio as well as higher electron transfer efficiency
for higher transconductance. The device and MMIC fab-
rication process used for this work has been previously
reported [8]. A cross-section of the HEMT is shown in
Fig. l(a). The 0.1 pm T-gate InGaAs PM HEMT’s fab-
ricated using this process typically have a dc transcon-
ductance (G.) of 670 mS /mm with a cut-off frequency
(j) of 130 GHz, which is as high as the devices with a
conventional trapezoidal cross section gate. Compared to
the device with a conventional gate structure, the noise
performance of the T-gate PM HEMT is improved owing
to the lower gate resistance.

In the LNA design, a four-finger, 40 pm gate periphery
HEMT was used in both one- and two-stage amplifiers.
The linear small signal equivalent circuit parameters are
obtained from careful fit of the measured small signal
S-parameters to 40 GHz. Noise model parameters used
for simulation are obtained from fitting measured noise
parameters to 26 GHz. These parameters are consistent
with an estimation based on device physical dimensions
and parameters. The circuit model parameters of the de-
vice at 2 V drain voltage and the peak transconductance
(g~) condition are shown in Fig. 1(b). The accurate de-
vice measurement and modeling techniques are discussed
as follows.

B. Accurate Device Modeling

The accuracy of device models relies heavily on the
precise measurement of discrete devices. Since the on-
wafer measurement is not available in W-band at the pres-
ent time, a frequency extrapolation model obtained from
the low frequency S-parameters measurement becomes in-
evitable. Errors in measurement of the low frequency
S-parameters (typically 1-26 GHz or 1-40 GHz) will sig-
nificantly affect the behavior of the model at 94 GHz. The
commercial calibration standards, e.g., open, short, load
and through, usual] y generate uncertainties during the cal-
ibration procedure. These calibration uncertainties are as-
cribed to the discontinuities of the co-planar ground-sig-
nal-ground line probe launcher, the vague definition of
the calibration reference planes at the probing positions
and the inexact open end capacitance of the probe tips,
etc. The measurement inaccuracy caused by these uncer-
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Fig, 1. The InGaAs PM HEMT structure and equivalent circuit model. (a)
The InGaAs PM HEMT profile, (b) The linear small signal equivalent cir-
cuit and noise model of 40 pm HEMT.

tainties becomes worse for a smaller device required to
operate at a higher frequency. For example, the open end
capacitance of the probe is in the order of 5-10 fF, while
the C~, of a 40 ~m HEMT device used in the amplifiers
is around 25 fF. The percentage error can be as high as
20% and causes significant change of frequency response
at W-band.

In order to overcome these ambiguities, a set of spe-
cially designed on-wafer calibration standards was con-
structed on the same wafer along with the monolithic
LNA’s and discrete devices. Fig. 2(a) shows the layout
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Fig. 2. Layouts of the on-wafer calibration standards and discrete HEMT
device.

for this set of calibration standards and the 40 pm discrete
HEMT device. The calibration standards consist of co-
planar wave-guide (CPW) open, short, load and through
which have the same feed patterns as the device to be
tested. These standards are modeled carefully with full-
wave EM analysis [7] and the reference planes are clearly
defined at a special location from the edge of probe pads
as indicated in the layouts. The models of these standards
can be entered in the calibration kit of HP8510 network
analyzer to perform the S-parameter measurement. Fig. 3
compares the measured small signal S-parameters of a 40
~m InGaAs PM HEMT at 2 V drain bias with gate biased
on g~ peak using the Cascade impedance substrate and the
on-wafer CPW calibration standards. It is observed that
the measured S11 trace follows a higlher constant resis-
tance circle when using the Cascade calibration standards.
This results in higher R~ in the small signal model and
causes a significant underestimation of the device’s gain
at high frequency. The maximum available gain of two
models derived from these two sets of measurement data
has a difference of about 3 dB at 94 GHz.

III. PASSIVESTRUCTUREANALYSIS

A. Full-Wave Ekl Analysis of Passive Structures

There are some problems with present passive struc-
ture models between W-band and microwave frequency
in the monolithic integrated circuits design. The validity
of models, which are generated by quasi-static analysis or
empirical formula [13], [14] and widely used in most mi-
crowave circuit theory based computer aided-design
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Fig. 3. Comparison of S-parameters measurement fot 40 ~m HEMT ob-
tained from conventional calibration standards (CASCAD) and newly de-
veloped ones (TRW).

(CAD) programs, should be further investigated. Also,
microwave circuit theory should be ‘applied carefully since
the coupling effect between elements tends to be stronger
at high frequencies. The numerical full-wave EM analysis
to characterize arbitrarily shaped MMIC structures be-
comes important to overcome these problems.

Several full-wave EM analysis tools are commercially
available based on different approaches using different
physical assumptions or numerical techniques. These ap-
proaches include method of moment to solve various in-
tegral equations and finite element method to solve partial
different equations (Maxwell’s equations). Based on the
obtained surface current or field distribution, any partic-
ular passive MMIC structures can be characterized in
terms of the S-parameters which is suitable for circuit de-
sign. The EM analysis being used in our design is a
method of moment solution for the surface current inte-
gral equation based on the assumption of stratified me-
dium in a conducting box [7].

B. Concerns of Full-Wave EM Analysis

The accuracy of numerical solutions in the full-wave
EM analysis is always a concern. The convergence and
consistence of the numerical solutions for such analyses
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are not guaranteed in general unless they have been
proved. This task is usually difficult since the Helmholtz
operator from frequency domain Maxwell’s equations is
indefinite instead of positive-definite under most of
bounda~ conditions. Thus each solution of the full-wave
EM analysis should be investigated carefully and ensured
to be meaningful before being used in the design. Some-
times, the numerical solution of current distributions are
clues for judgement. An example will be given later.

The computation time is another issue of full-wave EM
analysis in the design cycle since such analysis is a CPU
intensive job for computers. Currently, most microwave
circuit theory based CAD tools allow optimization to fine
tune the circuit performance. However, optimization of
circuit performance using EM analysis is not practical for
the time being. In order to use the tools more efficiently,
a design/analysis procedure is developed in our W-band
monolithic IC design. This procedure is described in Sec-
tion IV-B.

IV. CIRCUIT DESIGN CONSIDERATIONS AND DESIGN

METHODOLOGY

A. W-Band LNA Design Considerations

Fig. 4(a)-(d) shows the circuit schematic diagrams as
well as photographs of the complete monolithic one- and
two-stage LNA’s. These circuits are designed based on
conventional reactive matching techniques using quasi-
low pass topologies to achieve the maximum gain. All the
matching networks are realized with microstrip lines on a
100 pm thick GaAs substrate. Edge-coupled lines are used
for dc blocking in the two-stage design and radial stubs
are employed for RF by-pass. N + bulk resistors are used
in bias network to ensure stability of the amplifiers, and
reactive ion etching (RIE) technique is applied to fabri-
cate back-side via holes for grounding and dc returns. The
chip size of one- and two-stage LNA’s are 1.3 x 1.2 mm2
and 2.2 x 1.2 mm2, respectively.

The present LNA designs eliminate the use of metal-
insulator-metal (MIM) capacitors and thin-film resistors
(TFR’s) which are employed in most of other MMIC de-
signs. The elimination of these components saves two
process steps (nitride deposition for MIM capacitors and
resistive thin film deposition for TFR), providing im-
proved yield and lower the cost of the chip fabrication
without TFR and MIM variations. Typically, they are 15–
30% from the nominal values of the capacitance and re-
sistance. Moreover, the risks of degrading the HEMT
performance during these two process steps and the mod-
eling uncertainty of the MIM capacitors, for which no ex-
perimentally verified models at this frequency have been
reported to date, are avoided. A large on-chip shunt MIM
capacitor is often included in the bias network for low
frequency by-passing and stability in millimeter-wave
LNA designs [11], [12]. To insure stability without large
on-chip by-pass capacitors, a shunt resistor of 150 Q is
added to drain bias network and 50 0 to gate bias net-
work. These resistors cause an additional dc current con-

sumption of 20 mA for each stage when biased at 3 V.
Although this design approach does not require the TFR
or MIM capacitor process steps, all MMIC’s reported here
were subjected to the complete MMIC process since some
other circuits on the mask required these additional com-
ponents.

B. Rigorous Design/Analysis Procedure

A flow chart depicting the design/analysis procedure for
our monolithic W-band LNA development is shown in
Fig. 5. The W-band monolithic two-stage LNA is used as
an example to illustrate this design/analysis procedure.
After careful device modeling as described in Section II-B
has been complete, conventional circuit synthesis and
simulation using existing models of passive elements
should be performed for the initial design. In this two-
stage LNA case, the quasi-low pass filter structures are
used for matching network, edge-coupled lines are se.
lected to block dc voltage and radial stubs are chosen as
RF ground for our two-stage design. Next, the critical
components for which the models are suspected to be in-
accurate so as to affect the circuit performance at W-band
need to be identified and characterized by EM analysis.
The edge coupled line and radial stub were analyzed in
this design exercise. Significant discrepancies can be ob-
served between the conventional quasi-static and full-
wave analyses as shown in Fig. 6(a)–(b). Both the inser-
tion loss of the edge-coupled line and the reflection coef-
ficient of the radial stub show 10-20 degrees phase dif-
ferences between the two models.

To judge whether the EM analysis gives reasonable an-
swer, the current distribution of the edge-coupled line ob-
tained from the numerical calculation is illustrated in Fig.
7(a)-(b) as an example. The magnitude of current distri-
bution on the edges is in proportion to the darkness in the
figures. Fig. 7(a) is the current distribution excited at 90
GHz. The distribution is almost symmetrical and the en-
ergy is strongly coupled. This is consistent with the de-
signed coupled pass band centered around 94 GHz. On
the other hand, Fig. 7(b) shows that when this structure
is excited by a stop band frequency of 60 GHz. The cur-
rent density at the output edge is much lower than that at
the input edge and is not uniformly distributed along the
transverse direction, which implies only little energy is
coupled through the coupled line. This provides evidence
for validity of the EM analysis from the view point of
physical meaning.

The design is then modified based on restimulation us-
ing the EM analysis results. After the design is complete,
the entire matching structures should be analyzed by EM
theory to ensure no severe coupling effects between ele-
ments. If there is significant impact on the circuit per-
formance, one needs to redefine more complicated critical
components and repeat the analysis and design procedure.

The linear simulation results of the two-stage W-band
LNA based on our design/analysis methodology and the
conventional procedures are shown in Fig. 8. There are
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Fig. 4. Schematic diagrams and photographs of the W-band one- and two-stage MMIC LNAs. (a) One-stage LNA schematic
di~gram. (b) Photograph of the one-stage LNA. (c) Two-stage LNA schematic diagram. (d) Photograph of the two-stage
LNA.
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Fig. 5. Flow chat to illustrate the rigorous design/analysis methodology.
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Fig. 6. Comparison of S-parameters analyzed vla full-wave EM theory (EM) and quasi-static assumption (LIBRA). (a) Radial
stub. (b) Edge-coupled hnes.

significant differences between these two results at lV- couple the signal from waveguide to microstrip. Fig. 9(a)
band. The comparison of simulation results with mea- shows the photograph of the waveguide to microstrip

surement will be presented in the Section V-B. transition test fixture. The insertion loss of this transition

fixture with a back-to-back transition connection is 1.7 to

2.0 dB from 88 to 96 GHz as shown in Fig. 9(b). All the
V. LNA PERFORMANCE measurement LNA results described below were cor-

Both one- and two-stage LNA, circuits were measured rected assuming half the back-to-back insertion loss is at-
in a WR1O waveguide test fixture. Anti-pedal finline tran- tributable separately to the input and output of the device
sitions on 125 Urn thick fused silica substrate are used to under test.
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(a)

(b)

Fig. 7. Surface element distribution of the edge-coupled lines obtained
from full-wave EM analysis at (a) 90 GHz. (b) 60 GHz. The magnitude of
current distribution on the edges is proportional to the darkness in the fig-
ures.
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Fig. 8. Comparison of the simulated W-band two-stage LNA performance
using conventional design approach (OLDMETHOD) and our design/anal-
ysis methodology (NEWMETHOD).

A. Monolithic One-Stage Ampli$er Results

The measured data of the one-stage LNA under 3 V
drain voltage and gate biased near g~ peak condition are
presented in Fig. 10(a)-(c). The noise figure and associ-
ated small-signal gain performances from 92 to 95 GHz
are shown in Fig. 10(a), which demonstrate a gain of 7
dB and a noise figure of 5.1 dB at 94 GHz. Fig. 10(b)
illustrates the input return loss and uncorrected gain. The
input return loss is better than 10 dB. Output return loss
is better than 7 dB as shown in Fig. 1O(C).

‘t

I I I I I I I I I I I
80 90 1OO(GHZ)

(b)

423

Fig. 9. Photograph and measurement results of the W-band test fixture and
finline transition. (a) Photograph of the complete test fixture. (b) Insertion
10SSand return loss of the finline transition.

B. Two-Stage Amplifier Measurements and Comparison
with Simulations

The measured data c~fthe two-stage LNA are presented
in Fig. 11(a)-(d). The noise figure and associated small
signal gain performances from 91 to 95 GHz are shown
in Fig. 11(a), which demonstrate a gain of 13.3 dB and a
noise figure of 5,5 dB at 94 GHz. Fig. 1l(b) illustrates
the input return loss and uncorrected gain from 80 to 100
GHz. The input return. loss is better than 10 dB from 91
to 97 GHz. At 89 GHz, the measured gain including fix-
ture loss is 15.3 dB or 17 dB after correction. Output re-
turn loss is better than 5 dB across the 80 to 100 GHz
band as shown in Fig. 1l(c). The input power versus out-
put power plot is shown in Fig. 1l(d). The output 1 dB
compression point of this LNA is 4 dBm and the two-tone
ou~put third-order intermodulation intercept point (IP3) is
13 dBm. All of results presented above are under 3 V
drain bias condition with gate voltage near peak g~ for
both stages. 5
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Fig. 10. Measurement results of the W-bandone-stage MMIC LNA at 3
V drain bias. (a) Noise figure and associated small signal gain. (b) Input
return loss and uncorrected gain. (c) Output return loss.

To demonstrate the effectiveness of our rigorous de-
sign/analysis methodology, a comparison of simulated
two-stage LNA performance versus measurement under
2 V drain bias with gate biased near g~ peak condition is
shown in Fig. 12(a)–(b). Fig. 12(a) presents the gain and
input return loss, while Fig. 12(b) indicates the output
return loss and noise figure. The gain agreement between
measurement and simulation is within 1 dB from 80 to
100 GHz and noise figure agreement is better than 0.5 dB
from 91 to 95 GHz. It is noted from Figs. 1l(a) and 12(a)
that the gain of this two-stage LNA for 2 V drain voltage
is about 1.5 dB lower than that for 3 V condition, but the
noise figure remains virtually unchanged.

The two-stage LNA has also been tested under different
temperature conditions. Fig. 13 shows the gain and output
power variation versus input power at – 35 ‘C, 23 “C, and
65 “C, respectively. The gain variation over temperature
is less than 3 dB which approximates a temperature slope
of – 0.03 dB i 0C, and the saturated output power vari-
ation is about 1 dB. Temperature compensation may be
needed for some system applications.

C. Eight-Stage Ampli@er Results

Due to the low return loss of the amplifiers, the
monolithic chips are easily cascaded to make an ex-
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Fig. 11. Measurement results of the W-band two-stage MMIC LNA at 3
V drain bias, (a) Noise figure and associated small signal gain. (b) Input
return loss and uncorrected gain. (c) Output return loss (d) F’,. versus P,).,
and third harmonic intermodrdation.
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Fig. 12. Comparison between simulation (LNA40) and measurement
(LNAMEA) of the two-stage LNA performance at 2 V drain bias condition.

(a) Gain and input return loss. (b) Output return loss and noise figure.
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Fig. 13. Gain and output power performance variation of the two-stage
LNA”due to temperature.

tremely high gain amplifier suitable for some system ap-
plications. An eight-stage amplifiers has been success-
fully built using four monolithic two-stage LNA chips.
Edge coupled lines fabricated on fused silica substrate are
used to connect the monolithic chips and provide dc block.
Detailed design information is described elsewhere [15].
The measured results were excellent. A noise figure of
6.5 dB with associated gain of 49 dB from waveguide to
waveguide was achieved at 94 GHz. The schematic dia-
gram of this eight-stage amplifiers and the measured noise

MMIC LNA

W-BAND WAVEOUIDE Vd Vd Vd Vd
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W-BAND WAV6GUtDE
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● m ● *
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(a)

}iP6970B NOISE FIGURE METER

‘“”or-60”o

OLL ~40,0
92 93,5 95 (GHz)

(b)

Fig. 14. The eight-stage W-band LNA. (a) Schematic diagram of the four
cascaded monolithic two-stag,e amplifiers. (b) Gain and noise figure mea-
surement of the complete umt from waveguide to waveguide (no correction
is made).

figure with associated gain from 92-95 GHz are shown in
Fig. 14.

The circuit yield of these monolithic chips has been ex-
cellent for the small sample tested. 20 LNA chips from
the same three inch wafer were selected for testing simply
by visual inspection. All of them are dc functional and
only two of them do not show consistent RF performance.
This high yield is attributed to stable MMIC process. The
success of this eight-stage high gain amplifier is also as-
cribed to high yield of the monolithic two-stage LNA
chips so that it was not difficult in obtaining enough func-
tional chips on the same wafer to cascade the complete
amplifier.

VI. SUMMARY

We have presented recent development of W-band one-
and two-sta~ge PM HEMT monolithic LNA’s. At 94 GHz,
a gain of 13.3 dB and a noise figure of 5.5 dB, with a
maximum gain of 17 dB at 89 GHz have been achieved
for the two-stage LNA. The one-stage LNA als~ dem-
onstrates a consistent performance of 5.1 dB noise figure
with 7 dB associated gain. These encouraging results
shows the potential of InGaAs PM HEMT technology for
W-band high performance system applications, such as
low noise receiver systems which require extremely high
gain unit. The excellent device characteristics and rigor-
ous design/analysis methodology are the foundations of
this successful W-band monolithic IC design.
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